Welcome to EUCLOCK - Entrainment of the circadian clock -
Search


Local Time

Menu



EUCLOCK Events
· Annual Meetings
· Summer Schools
· Final Symposium

Sub Projects
· Entrainment in humans
· Entrainment in mice
· Entrainment in flies
· Novel clock genes and principles
· EUCLIS






EUCLOCK Intranet
· Forums
· Your Account
· Members_List
· Private_Messages
· Downloads

Login
Nickname

Password

Don't have an account yet? You can create one. Only for EUCLOCK members.

Hit Counter
We received
5216642
page views since June 2006

 
Entrainment in flies





Sub-Project 3: Entrainment in flies

The identification of the period (per) clock gene in Drosophila melanogaster propelled the fruit-fly into the frontline of chronobiological research. The late 1990’s saw the discovery of mammalian clock genes that were true homologues of their fly counterparts, both in evolutionary and mechanistic senses. Unlike mammals in which gene duplications are common, the fly has a single copy of most of the cardinal clock genes, many of which have now been extensively characterised. The hierarchical organisation of the clock, with a pacemaker located in the brain that controls behavioural rhythms, in addition to oscillations in peripheral organs, is also conserved between flies and mammals. The central pacemaker in the fly brain consists of six groups of neurons (~200 individual cells) with different morphologies that express different neurotransmitters and play distinct roles in generating behavioural rhythms. In the larvae there are only three functional pacemaker groups (~20 cells). Our ability to monitor and manipulate pacemaker cells in living flies, using sophisticated genetic and molecular techniques, makes Drosophila an attractive simple model system, in comparison to the mammalian suprachiasmatic nucleus (SCN). Furthermore, flies are active in the morning (M) and evening (E), resembling day-active mammals, and the neuronal groups responsible for M and E components have recently been identified. This adds to the continued great potential of Drosophila as a model system to take the circadian clock and its entrainment apart.

Sub-Project leader: Prof. Dr. Charlotte Helfrich-Förster, Universtity of Regensburg, Zoological Institute

Members:

Publications:

2006
Bachleitner W., Kempinger L., Wülbeck C., Rieger D. and Helfrich-Förster C. (2007) Moonlight shifts the endogenous clock of Drosophila melanogaster. PNAS, in press.
Costa R, Sandrelli F, & Kyriacou C.P. (2007) Evolution of behavioural genes in Drosophila, in Insect Neurobiology, 2007, Cold Spring Harbor Press, in press.
Glaser FT. (2007) Temperatursynchronisation der circadianen Uhr von Drosophila melanogaster: Eine genetische und molekulare Untersuchung beteiligter Mechanismen und Rezeptoren. Thesis, University of Regensburg.
Helfrich-Förster C. (2006) The neural basis of Drosophila’s circadian clock. Sleep and Biological Rhythms 4, 224-234.
Helfrich-Förster C., Shafer O.T., Wülbeck C., Grieshaber E, Rieger D and Taghert P. (2007) Development and morphology of the clock-gene-expressing Lateral Neurons of Drosophila melanogaster. J. Comp. Neurol. 500, 47-70.
Hemsley M.J., Mazzotta G.M., Mason M., Dissel S., Toppo S., Pagano M.A., Sandrelli F., Meggio F., Rosato E., Costa R., Tosatto S. (2007) Linear motifs in the C-terminus of D. melanogaster Cryptochrome, Biochem. Biophys. Res. Comm. (BBRC), (in press).
Kyriacou C, Peixoto, A A and Costa R. (2007) A latitudinal cline in a clock gene in Australian D. melanogaster populations : neither down nor under. J. Evol. Biol. (in press).
Mason M. (2006). Regolazione dell’attività del Criptocromo di Drosophila melanogaster, il fotorecettore circadiano della luce blu. Tesi di Dottorato in Genetica e Biologia Molecolare dello Sviluppo. Università di Padova.
Peschel N, Veleri S and Stanewsky R. (2006) Veela defines a molecular link between cryptochrome and timeless in the light-input pathway to Drosophila’s circadian clock. PNAS 103, 17313-17318
Rieger D, Shafer O, Tomioka K and Helfrich-Förster C (2006) Functional analysis of circadian pacemaker neurons in Drosophila melanogaster. J. Neurosci 26, 2531-2543.
Rosato E and Kyriacou CP. (2006).  The analysis of locomotor activity rhythms in Drosophila.  Nature Protocols 1, 559-568Rosato E, Tauber E and Kyriacou CP (2006) Molecular genetics of the fruit-fly circadian clock. Eur. J. Human Gen. 14, 729–738.
Sawyer LA, Sandrelli F, Pasetto C, Peixoto AA, Rosato E, Costa R and Kyriacou CP. (2006) The period gene Thr-Gly polymorphism in Australian and African Drosophila melanogaster populations: Implications for selection. Genetics 174, 465–480.
Shafer OT, Helfrich-Förster C, Renn SCP and Taghert PH (2006) Reevaluation of Drosophila melanogaster’s neuronal circadian pacemakers reveals new neuronal classes. J. Comp. Neurol. 498, 180-193.
Veleri S, Rieger D, Helfrich Förster C and Stanewsky R (2007) Hofbauer-Buchner Eyelet Affects Circadian Photosensitivity and Coordinates TIM and PER Expression in Drosophila Clock Neurons. J. Biol. Rhythms 22, 29-42.

2007
Bachleitner W., Kempinger L., Wülbeck C., Rieger D. & Helfrich-Förster C. (2007). Moonlight shifts the endogenous clock of Drosophila melanogaster. PNAS, 104:3538-3543.
Codd V.,  Dolezel D., Piccin A., Garner K.J., Racey S.N., Straatman K.R., Louis E.J., Costa R.,  Sauman I., Kyriacou C.P. & Rosato E. (2007). Circadian rhythm gene regulation in the housefly, Musca domestica. Genetics, in press
De Pittà C., Bertolucci C., Mazzotta M.G., Bernante F., Rizzo G., De Nardi B., Pallavicini A., Lanfranchi G. & Costa R. (2007). Systematic sequencing of mRNA from the Antarctic krill (Euphausia superba) and first tissue specific transcriptional signature.  BMC Genomics, in press.
Glaser F. & Stanewsky R. (2008). Synchronization of the Drosophila circadian clock by temperature cycles: Cold Spring Harbor Symp. Quant. Biol., in press.
Glaser F. (2007). Temperatursynchronisation der circadianen Uhr von Drosophila melanogaster: Eine genetische und molekulare Untersuchung beteiligter Mechanismen und Rezeptoren. Thesis, University of Regensburg
Hamasaka Y., Rieger D., Parmentier M.-L., Grau Y., Helfrich-Förster C. & Nässel D. (2007). Glutamate and its Metabotropic Receptor in Drosophila Clock Neuron circuits. J. Comp. Neurol. 505, 32-45.
Helfrich-Förster C., Shafer O.T., Wülbeck C., Grieshaber E., Rieger D. & Taghert P. (2007). Development and morphology of the clock-gene-expressing lateral neurons of Drosophila melanogaster. J. Comp. Neurol. 500, 47-70.
Hemsley M.J., Mazzotta G.M., Mason M., Dissel S., Toppo S., Pagano M.A., Sandrelli F., Meggio F., Rosato E., Costa R. & Tosatto S.C. (2007). Linear motifs in the C-terminus of D. melanogaster cryptochrome. Biochem. Biophys. Res. Commun. 355, 531-537.
Kyriacou C.P., Peixoto A.A. & Costa R. (2007). A cline in the Drosophila melanogaster period gene in Australia: neither down nor under. J. Evol. Biol. 20, 1649-1651.
Kyriacou, C.P., Peixoto, A.A., Sandrelli, F., Costa R & Tauber, E. (2008). Clines in clock genes. Trends Genetics, in press.
Maywood, E.S., O’Neil, J.S., Reddy, A.B., Chesham, J.E., Prosser, H.M., Kyriacou, C.P., Godinho, S I H, Nolan P.M., & Hastings, M.H. (2007). Genetic and molecular analysis of the central and peripheral circadian clockwork of mice. Cold Spring Harbor Symp. Quant. Biol. 72, 1-10.
Picot M., Cusumano P., Klarsfeld A., Ueda R. & Rouyer F. (2007). Light activates output from evening neurons and inhibits output from morning neurons in the Drosophila circadian clock. PLoS Biol. 5(11), e315.
Richier B., Michard-Vanh?e C., Lamouroux A., Papin C. & Rouyer F. (2008). The Clockwork Orange Drosophila protein functions as both an activator and a repressor of clock gene expression. J. Biol. Rhythms, in press.
Rieger D. (2007) Die innere Uhr von Drosophila melanogaster. Synchronisation durch Licht und funktionelle Analyse der circadianen Schrittmacherneurone. Thesis, University of Regensburg.
Rieger D., Fraunholz C., Popp J., Bichler D., Dittmann R., & Helfrich-Förster C. (2007). The fruit fly Drosophila melanogaster favours dim light and times its activity peaks to early dawn and late dusk. J. Biol. Rhythms 22, 387-399.
Sandrelli F., Tauber E., Pegoraro M., Mazzotta G., Cisotto P., Landskron J., Stanewsky R., Piccin A., Rosato E., Zordan M., Costa R. & Kyriacou C.P. (2007). A molecular basis for natural selection at the timeless locus in Drosophila melanogaster. Science 316, 1898-1900.
Sandrelli F., Cappellozza S., Benna C., Saviane A., Mastella A., Mazzotta G.M., Moreau S., Pegoraro M., Piccin A., Zordan M.A., Cappellozza L., Kyriacou C.P. & Costa R. (2007). Phenotypic effects induced by knock-down of the period clock gene in Bombyx mori. Genet. Res. 89, 73-84.
Stanewsky R. (2007). Analysis of rhythmic gene expression in adult Drosophila using the firefly luciferase reporter gene. Methods Mol. Biol. 362, 131-42.
Tauber E., Zordan M., Sandrelli F., Pegoraro M., Osterwalder N., Breda C., Daga A., Selmin A., Monger K., Benna C., Rosato E., Kyriacou C.P. & Costa R. (2007). Natural selection favors a newly derived timeless allele in Drosophila melanogaster. Science 316, 1895-1898.
Tauber E., & Kyriacou, C.P. (2007). Genomic approaches for studying biological clocks. Functional Ecology, in press
Veleri S., Rieger D., Helfrich Förster C. & Stanewsky R. (2007). Hofbauer-Buchner Eyelet Affects Circadian Photosensitivity and Coordinates TIM and PER Expression in Drosophila Clock Neurons. J. Biol. Rhythms 22, 29-42.









Copyright © by EUCLOCK - Entrainment of the circadian clock - All Right Reserved.

Published on: 2024-02-07 (18536 reads)

[ Go Back ]
All logos and trademarks in this site are property of their respective owner. The comments are property of their posters, all the rest © 2006 by the euclock management.
You can syndicate our news using the file backend.php or ultramode.txt
Site created by David Lenssen
Page Generation: 0.08 Seconds