Entrainment in flies

0

The recognition of the duration (per) clock genetics in Drosophila melanogaster thrust the fruit-fly right into the frontline of chronobiological research. The late 1990’s saw the discovery of mammalian clock genes that held true homologues of their fly equivalents, both in transformative as well as mechanistic senses.

Unlike animals in which gene replications are common, the fly has a single duplicate of the majority of the principal clock genetics, a lot of which have actually now been extensively characterised. The ordered organisation of the clock, with a pacemaker situated in the mind that regulates behavioral rhythms, in addition to oscillations in peripheral body organs, is also preserved in between flies and also mammals.

The main pacemaker in the fly brain includes 6 teams of neurons (~ 200 private cells) with various morphologies that share various natural chemicals and play unique functions in generating behavioral rhythms.

In the larvae there are only three practical pacemaker groups (~ 20 cells). Our capacity to monitor and adjust pacemaker cells in living flies, utilizing sophisticated genetic and molecular strategies, makes Drosophila an appealing simple design system, in contrast to the mammalian suprachiasmatic center (SCN).

In addition, flies are active in the early morning (M) as well as night (E), looking like day-active mammals, as well as the neuronal groups in charge of M and also E parts have actually recently been identified. This adds to the continued great possibility of Drosophila as a design system to take the circadian clock and also its entrainment apart.

Sub-Project leader: Prof. Dr. Charlotte Helfrich-Förster, Universtity of Regensburg, Zoological Institute

Members

  • Prof. Dr. Rodolfo Costa, College of Padua, Division of Biology
  • Prof. Dr. Domien Beersma, College of Groningen, Chronobiology
  • Prof. Dr. Ralf Stanewsky, Queen Mary & Westfield College, School of Biological Sciences
  • Prof. Dr. Charalambos Kyriacou (Replacement Leader), University of Leicester, Division of Genes
  • Dr. François Rouyer, CNRS, Institute de Neurobiologie Alfred Fessard
  • Dr. Emma Perfect, LUX Biotechnology
  • Publications

2006

  • Bachleitner W., Kempinger L., Wülbeck C., Rieger D. and Helfrich-Förster C. (2007) Moonlight changes the endogenous clock of Drosophila melanogaster. PNAS, in press.
  • Costa R, Sandrelli F, & Kyriacou C.P. (2007) Evolution of behavioral genetics in Drosophila, in Bug Neurobiology, 2007, Cold Springtime Harbor Press, in press.
  • Glaser FT. (2007) Temperatursynchronisation der circadianen Uhr von Drosophila melanogaster: Eine genetische und molekulare Untersuchung beteiligter Mechanismen und Rezeptoren. Thesis, College of Regensburg.
  • Helfrich-Förster C. (2006) The neural basis of Drosophila’s circadian clock. Rest and also Biological Rhythms 4, 224-234.
  • Helfrich-Förster C., Shafer O.T., Wülbeck C., Grieshaber E, Rieger D as well as Taghert P. (2007) Growth as well as morphology of the clock-gene-expressing Lateral Neurons of Drosophila melanogaster. J. Comp. Neurol. 500, 47-70.
  • Hemsley M.J., Mazzotta G.M., Mason M., Dissel S., Toppo S., Pagano M.A., Sandrelli F., Meggio F., Rosato E., Costa R., Tosatto S. (2007) Straight motifs in the C-terminus of D. melanogaster Cryptochrome, Biochem. Biophys. Res. Comm. (BBRC), (in press).
  • Kyriacou C, Peixoto, A An and Costa R. (2007) A latitudinal cline in a clock genetics in Australian D. melanogaster populations: neither down nor under. J. Evol. Biol. (in press).
  • Mason M. (2006 ). Regolazione dell’ attività del Criptocromo di Drosophila melanogaster, il fotorecettore circadiano della luce blu. Tesi di Dottorato in Genetica e Biologia Molecolare dello Sviluppo. Università di Padova.
  • Peschel N, Veleri S and also Stanewsky R. (2006) Veela defines a molecular link in between cryptochrome and also classic in the light-input pathway to Drosophila’s circadian clock. PNAS 103, 17313-17318
  • Rieger D, Shafer O, Tomioka K and also Helfrich-Förster C (2006) Functional evaluation of circadian pacemaker neurons in Drosophila melanogaster. J. Neurosci 26, 2531-2543.
  • Rosato E as well as Kyriacou CP. (2006 ). The evaluation of locomotor activity rhythms in Drosophila. Nature Protocols 1, 559-568Rosato E, Tauber E and Kyriacou CP (2006) Molecular genes of the fruit-fly circadian clock. Eur. J. Human Being Gen. 14, 729- 738.
  • Sawyer LA, Sandrelli F, Pasetto C, Peixoto AA, Rosato E, Costa R and Kyriacou CP. (2006) The duration gene Thr-Gly polymorphism in Australian as well as African Drosophila melanogaster populaces: Ramifications for option. Genetics 174, 465- 480.
  • Shafer OT, Helfrich-Förster C, Renn SCP and Taghert PH (2006) Reevaluation of Drosophila melanogaster’s neuronal circadian pacemakers discloses new neuronal courses. J. Comp. Neurol. 498, 180-193.
  • Veleri S, Rieger D, Helfrich Förster C and also Stanewsky R (2007) Hofbauer-Buchner Eyelet Influences Circadian Photosensitivity and also Coordinates TIM as well as PER Expression in Drosophila Clock Nerve Cells. J. Biol. Rhythms 22, 29-42.

2007

  • Bachleitner W., Kempinger L., Wülbeck C., Rieger D. & Helfrich-Förster C. (2007 ). Moonlight changes the endogenous clock of Drosophila melanogaster. PNAS, 104:3538 -3543.
  • Codd V., Dolezel D., Piccin A., Garner K.J., Racey S.N., Straatman K.R., Louis E.J., Costa R., Sauman I., Kyriacou C.P. & Rosato E. (2007 ). Circadian rhythm gene guideline in the housefly, Musca domestica. Genetics, in press
  • De Pittà C., Bertolucci C., Mazzotta M.G., Bernante F., Rizzo G., De Nardi B., Pallavicini A., Lanfranchi G. & Costa R. (2007 ). Systematic sequencing of mRNA from the Antarctic krill (Euphausia superba) as well as initial cells specific transcriptional signature. BMC Genomics, in press.
  • Glaser F. & Stanewsky R. (2008 ). Synchronization of the Drosophila circadian clock by temperature cycles: Cold Springtime Harbor Symp. Quant. Biol., in press.
  • Glaser F. (2007 ). Temperatursynchronisation der circadianen Uhr von Drosophila melanogaster: Eine genetische und molekulare Untersuchung beteiligter Mechanismen und Rezeptoren. Thesis, College of Regensburg
  • Hamasaka Y., Rieger D., Parmentier M.-L., Grau Y., Helfrich-Förster C. & Nässel D. (2007 ). Glutamate and also its Metabotropic Receptor in Drosophila Clock Neuron circuits. J. Comp. Neurol. 505, 32-45.
  • Helfrich-Förster C., Shafer O.T., Wülbeck C., Grieshaber E., Rieger D. & Taghert P. (2007 ). Development and also morphology of the clock-gene-expressing lateral nerve cells of Drosophila melanogaster. J. Comp. Neurol. 500, 47-70.
  • Hemsley M.J., Mazzotta G.M., Mason M., Dissel S., Toppo S., Pagano M.A., Sandrelli F., Meggio F., Rosato E., Costa R. & Tosatto S.C. (2007 ). Linear themes in the C-terminus of D. melanogaster cryptochrome. Biochem. Biophys. Res. Commun. 355, 531-537.
  • Kyriacou C.P., Peixoto A.A. & Costa R. (2007 ). A cline in the Drosophila melanogaster duration genetics in Australia: neither down neither under. J. Evol. Biol. 20, 1649-1651.
  • Kyriacou, C.P., Peixoto, A.A., Sandrelli, F., Costa R & Tauber, E. (2008 ). Clines in clock genetics. Fads Genetics, in press
  • Maywood, E.S., O’Neil, J.S., Reddy, A.B., Chesham, J.E., Prosser, H.M., Kyriacou, C.P., Godinho, S I H, Nolan P.M., & Hastings, M.H. (2007 ). Genetic and molecular evaluation of the main and outer circadian clockwork of mice. Cold Springtime Harbor Symp. Quant. Biol. 72, 1-10.
  • Picot M., Cusumano P., Klarsfeld A., Ueda R. & Rouyer F. (2007 ). Light triggers outcome from evening nerve cells and also inhibits result from morning neurons in the Drosophila circadian clock. PLoS Biol. 5( 11 ), e315.
  • Richier B., Michard-Vanh? e C., Lamouroux A., Papin C. & Rouyer F. (2008 ). The Clockwork Orange Drosophila protein functions as both an activator as well as a repressor of clock genetics expression. J. Biol. Rhythms, in press.
  • Rieger D. (2007) Pass away innere Uhr von Drosophila melanogaster. Synchronisation durch Licht und funktionelle Analyse der circadianen Schrittmacherneurone. Thesis, University of Regensburg.
  • Rieger D., Fraunholz C., Popp J., Bichler D., Dittmann R., & Helfrich-Förster C. (2007 ). The fruit fly Drosophila melanogaster favours dark light and times its task comes to a head to early dawn as well as late sundown. J. Biol. Rhythms 22, 387-399.
  • Sandrelli F., Tauber E., Pegoraro M., Mazzotta G., Cisotto P., Landskron J., Stanewsky R., Piccin A., Rosato E., Zordan M., Costa R. & Kyriacou C.P. (2007 ). A molecular basis for natural selection at the timeless locus in Drosophila melanogaster. Science 316, 1898-1900.
  • Sandrelli F., Cappellozza S., Benna C., Saviane A., Mastella A., Mazzotta G.M., Moreau S., Pegoraro M., Piccin A., Zordan M.A., Cappellozza L., Kyriacou C.P. & Costa R. (2007 ). Phenotypic effects induced by knock-down of the period clock gene in Bombyx mori. Genet. Res. 89, 73-84.
  • Stanewsky R. (2007 ). Analysis of balanced genetics expression in grown-up Drosophila utilizing the firefly luciferase press reporter gene. Techniques Mol. Biol. 362, 131-42.
  • Tauber E., Zordan M., Sandrelli F., Pegoraro M., Osterwalder N., Breda C., Daga A., Selmin A., Monger K., Benna C., Rosato E., Kyriacou C.P. & Costa R. (2007 ). Natural selection prefers a newly acquired ageless allele in Drosophila melanogaster. Science 316, 1895-1898.
  • Tauber E., & Kyriacou, C.P. (2007 ). Genomic techniques for researching biological clocks. Useful Ecology, in press.
  • Veleri S., Rieger D., Helfrich Förster C. & Stanewsky R. (2007 ). Hofbauer-Buchner Eyelet Impacts Circadian Photosensitivity and Works With TIM as well as PER Expression in Drosophila Clock Nerve Cells. J. Biol. Rhythms 22, 29-42.

LEAVE A REPLY

Please enter your comment!
Please enter your name here