Sub-Project 3:

Entrainment in flies

The identification of the period (per) clock gene in Drosophila melanogaster propelled the fruit-fly into the frontline of chronobiological research. The late 1990’s saw the discovery of mammalian clock genes that were true homologues of their fly counterparts, both in evolutionary and mechanistic senses. Unlike mammals in which gene duplications are common, the fly has a single copy of most of the cardinal clock genes, many of which have now been extensively characterised. The hierarchical organisation of the clock, with a pacemaker located in the brain that controls behavioural rhythms, in addition to oscillations in peripheral organs, is also conserved between flies and mammals. The central pacemaker in the fly brain consists of six groups of neurons (~200 individual cells) with different morphologies that express different neurotransmitters and play distinct roles in generating behavioural rhythms. In the larvae there are only three functional pacemaker groups (~20 cells). Our ability to monitor and manipulate pacemaker cells in living flies, using sophisticated genetic and molecular techniques, makes Drosophila an attractive simple model system, in comparison to the mammalian suprachiasmatic nucleus (SCN). Furthermore, flies are active in the morning (M) and evening (E), resembling day-active mammals, and the neuronal groups responsible for M and E components have recently been identified. This adds to the continued great potential of Drosophila as a model system to take the circadian clock and its entrainment apart.

Sub-Project leader: Prof. Dr. Charlotte Helfrich-Förster, Universtity of Regensburg, Zoological Institute

Members

  • Prof. Dr. Domien Beersma, University of Groningen, Chronobiology

Publications

2006

Bachleitner W., Kempinger L., Wülbeck C., Rieger D. and Helfrich-Förster C. (2007) Moonlight shifts the endogenous clock of Drosophila melanogaster. PNAS, in press.
Costa R, Sandrelli F, & Kyriacou C.P. (2007) Evolution of behavioural genes in Drosophila, in Insect Neurobiology, 2007, Cold Spring Harbor Press, in press.
Glaser FT. (2007) Temperatursynchronisation der circadianen Uhr von Drosophila melanogaster: Eine genetische und molekulare Untersuchung beteiligter Mechanismen und Rezeptoren. Thesis, University of Regensburg.
Helfrich-Förster C. (2006) The neural basis of Drosophila’s circadian clock. Sleep and Biological Rhythms 4, 224-234.
Helfrich-Förster C., Shafer O.T., Wülbeck C., Grieshaber E, Rieger D and Taghert P. (2007) Development and morphology of the clock-gene-expressing Lateral Neurons of Drosophila melanogaster. J. Comp. Neurol. 500, 47-70.
Hemsley M.J., Mazzotta G.M., Mason M., Dissel S., Toppo S., Pagano M.A., Sandrelli F., Meggio F., Rosato E., Costa R., Tosatto S. (2007) Linear motifs in the C-terminus of D. melanogaster Cryptochrome, Biochem. Biophys. Res. Comm. (BBRC), (in press).
Kyriacou C, Peixoto, A A and Costa R. (2007) A latitudinal cline in a clock gene in Australian D. melanogaster populations : neither down nor under. J. Evol. Biol. (in press).
Mason M. (2006). Regolazione dell’attività del Criptocromo di Drosophila melanogaster, il fotorecettore circadiano della luce blu. Tesi di Dottorato in Genetica e Biologia Molecolare dello Sviluppo. Università di Padova.
Peschel N, Veleri S and Stanewsky R. (2006) Veela defines a molecular link between cryptochrome and timeless in the light-input pathway to Drosophila’s circadian clock. PNAS 103, 17313-17318
Rieger D, Shafer O, Tomioka K and Helfrich-Förster C (2006) Functional analysis of circadian pacemaker neurons in Drosophila melanogaster. J. Neurosci 26, 2531-2543.
Rosato E and Kyriacou CP. (2006). The analysis of locomotor activity rhythms in Drosophila. Nature Protocols 1, 559-568Rosato E, Tauber E and Kyriacou CP (2006) Molecular genetics of the fruit-fly circadian clock. Eur. J. Human Gen. 14, 729–738.
Sawyer LA, Sandrelli F, Pasetto C, Peixoto AA, Rosato E, Costa R and Kyriacou CP. (2006) The period gene Thr-Gly polymorphism in Australian and African Drosophila melanogaster populations: Implications for selection. Genetics 174, 465–480.
Shafer OT, Helfrich-Förster C, Renn SCP and Taghert PH (2006) Reevaluation of Drosophila melanogaster’s neuronal circadian pacemakers reveals new neuronal classes. J. Comp. Neurol. 498, 180-193.
Veleri S, Rieger D, Helfrich Förster C and Stanewsky R (2007) Hofbauer-Buchner Eyelet Affects Circadian Photosensitivity and Coordinates TIM and PER Expression in Drosophila Clock Neurons. J. Biol. Rhythms 22, 29-42.

2007

Bachleitner W., Kempinger L., Wülbeck C., Rieger D. & Helfrich-Förster C. (2007). Moonlight shifts the endogenous clock of Drosophila melanogaster. PNAS, 104:3538-3543.
Codd V., Dolezel D., Piccin A., Garner K.J., Racey S.N., Straatman K.R., Louis E.J., Costa R., Sauman I., Kyriacou C.P. & Rosato E. (2007). Circadian rhythm gene regulation in the housefly, Musca domestica. Genetics, in press
De Pittà C., Bertolucci C., Mazzotta M.G., Bernante F., Rizzo G., De Nardi B., Pallavicini A., Lanfranchi G. & Costa R. (2007). Systematic sequencing of mRNA from the Antarctic krill (Euphausia superba) and first tissue specific transcriptional signature. BMC Genomics, in press.
Glaser F. & Stanewsky R. (2008). Synchronization of the Drosophila circadian clock by temperature cycles: Cold Spring Harbor Symp. Quant. Biol., in press.
Glaser F. (2007). Temperatursynchronisation der circadianen Uhr von Drosophila melanogaster: Eine genetische und molekulare Untersuchung beteiligter Mechanismen und Rezeptoren. Thesis, University of Regensburg
Hamasaka Y., Rieger D., Parmentier M.-L., Grau Y., Helfrich-Förster C. & Nässel D. (2007). Glutamate and its Metabotropic Receptor in Drosophila Clock Neuron circuits. J. Comp. Neurol. 505, 32-45.
Helfrich-Förster C., Shafer O.T., Wülbeck C., Grieshaber E., Rieger D. & Taghert P. (2007). Development and morphology of the clock-gene-expressing lateral neurons of Drosophila melanogaster. J. Comp. Neurol. 500, 47-70.
Hemsley M.J., Mazzotta G.M., Mason M., Dissel S., Toppo S., Pagano M.A., Sandrelli F., Meggio F., Rosato E., Costa R. & Tosatto S.C. (2007). Linear motifs in the C-terminus of D. melanogaster cryptochrome. Biochem. Biophys. Res. Commun. 355, 531-537.
Kyriacou C.P., Peixoto A.A. & Costa R. (2007). A cline in the Drosophila melanogaster period gene in Australia: neither down nor under. J. Evol. Biol. 20, 1649-1651.
Kyriacou, C.P., Peixoto, A.A., Sandrelli, F., Costa R & Tauber, E. (2008). Clines in clock genes. Trends Genetics, in press.
Maywood, E.S., O’Neil, J.S., Reddy, A.B., Chesham, J.E., Prosser, H.M., Kyriacou, C.P., Godinho, S I H, Nolan P.M., & Hastings, M.H. (2007). Genetic and molecular analysis of the central and peripheral circadian clockwork of mice. Cold Spring Harbor Symp. Quant. Biol. 72, 1-10.
Picot M., Cusumano P., Klarsfeld A., Ueda R. & Rouyer F. (2007). Light activates output from evening neurons and inhibits output from morning neurons in the Drosophila circadian clock. PLoS Biol. 5(11), e315.
Richier B., Michard-Vanh?e C., Lamouroux A., Papin C. & Rouyer F. (2008). The Clockwork Orange Drosophila protein functions as both an activator and a repressor of clock gene expression. J. Biol. Rhythms, in press.
Rieger D. (2007) Die innere Uhr von Drosophila melanogaster. Synchronisation durch Licht und funktionelle Analyse der circadianen Schrittmacherneurone. Thesis, University of Regensburg.
Rieger D., Fraunholz C., Popp J., Bichler D., Dittmann R., & Helfrich-Förster C. (2007). The fruit fly Drosophila melanogaster favours dim light and times its activity peaks to early dawn and late dusk. J. Biol. Rhythms 22, 387-399.
Sandrelli F., Tauber E., Pegoraro M., Mazzotta G., Cisotto P., Landskron J., Stanewsky R., Piccin A., Rosato E., Zordan M., Costa R. & Kyriacou C.P. (2007). A molecular basis for natural selection at the timeless locus in Drosophila melanogaster. Science 316, 1898-1900.
Sandrelli F., Cappellozza S., Benna C., Saviane A., Mastella A., Mazzotta G.M., Moreau S., Pegoraro M., Piccin A., Zordan M.A., Cappellozza L., Kyriacou C.P. & Costa R. (2007). Phenotypic effects induced by knock-down of the period clock gene in Bombyx mori. Genet. Res. 89, 73-84.
Stanewsky R. (2007). Analysis of rhythmic gene expression in adult Drosophila using the firefly luciferase reporter gene. Methods Mol. Biol. 362, 131-42.
Tauber E., Zordan M., Sandrelli F., Pegoraro M., Osterwalder N., Breda C., Daga A., Selmin A., Monger K., Benna C., Rosato E., Kyriacou C.P. & Costa R. (2007). Natural selection favors a newly derived timeless allele in Drosophila melanogaster. Science 316, 1895-1898.
Tauber E., & Kyriacou, C.P. (2007). Genomic approaches for studying biological clocks. Functional Ecology, in press
Veleri S., Rieger D., Helfrich Förster C. & Stanewsky R. (2007). Hofbauer-Buchner Eyelet Affects Circadian Photosensitivity and Coordinates TIM and PER Expression in Drosophila Clock Neurons. J. Biol. Rhythms 22, 29-42.

Funded by

Euclock is an Integrated Project (Sixth Framework Programme) funded by the European Commission  

Latest Tweet

We are what we repeatedly do. Excellence, then, is not an act, but a habit. Aristotle

Contact us

Ludwig-Maximilians-University
Munich Institute for medical Psychology
Goethestrasse 31. 80336 München, Germany.
Show Route
Centre for Chronobiology
Mail us