Entrainment in flies
Sub-Project 3: Entrainment in flies
The
identification of the period (per) clock gene in Drosophila
melanogaster propelled the fruit-fly into the frontline of
chronobiological research. The late 1990’s saw the discovery of
mammalian clock genes that were true homologues of their fly
counterparts, both in evolutionary and mechanistic senses. Unlike
mammals in which gene duplications are common, the fly has a single
copy of most of the cardinal clock genes, many of which have now been
extensively characterised. The hierarchical organisation of the clock,
with a pacemaker located in the brain that controls behavioural
rhythms, in addition to oscillations in peripheral organs, is also
conserved between flies and mammals. The central pacemaker in the fly
brain consists of six groups of neurons (~200 individual cells) with
different morphologies that express different neurotransmitters and
play distinct roles in generating behavioural rhythms. In the larvae
there are only three functional pacemaker groups (~20 cells). Our
ability to monitor and manipulate pacemaker cells in living flies,
using sophisticated genetic and molecular techniques, makes Drosophila
an attractive simple model system, in comparison to the mammalian
suprachiasmatic nucleus (SCN). Furthermore, flies are active in the
morning (M) and evening (E), resembling day-active mammals, and the
neuronal groups responsible for M and E components have recently been
identified. This adds to the continued great potential of Drosophila as
a model system to take the circadian clock and its entrainment apart.
Sub-Project leader: Prof. Dr. Charlotte Helfrich-Förster, Universtity of Regensburg, Zoological Institute
Members:
Publications: 2006 Bachleitner W., Kempinger L., Wülbeck C., Rieger D. and Helfrich-Förster C. (2007) Moonlight shifts the endogenous clock of Drosophila melanogaster. PNAS, in press. Costa R, Sandrelli F, & Kyriacou C.P. (2007) Evolution of behavioural genes in Drosophila, in Insect Neurobiology, 2007, Cold Spring Harbor Press, in press. Glaser FT. (2007) Temperatursynchronisation der circadianen Uhr von Drosophila melanogaster: Eine genetische und molekulare Untersuchung beteiligter Mechanismen und Rezeptoren. Thesis, University of Regensburg. Helfrich-Förster C. (2006) The neural basis of Drosophila’s circadian clock. Sleep and Biological Rhythms 4, 224-234. Helfrich-Förster C., Shafer O.T., Wülbeck C., Grieshaber E, Rieger D and Taghert P. (2007) Development and morphology of the clock-gene-expressing Lateral Neurons of Drosophila melanogaster. J. Comp. Neurol. 500, 47-70. Hemsley M.J., Mazzotta G.M., Mason M., Dissel S., Toppo S., Pagano M.A., Sandrelli F., Meggio F., Rosato E., Costa R., Tosatto S. (2007) Linear motifs in the C-terminus of D. melanogaster Cryptochrome, Biochem. Biophys. Res. Comm. (BBRC), (in press). Kyriacou C, Peixoto, A A and Costa R. (2007) A latitudinal cline in a clock gene in Australian D. melanogaster populations : neither down nor under. J. Evol. Biol. (in press). Mason M. (2006). Regolazione dell’attività del Criptocromo di Drosophila melanogaster, il fotorecettore circadiano della luce blu. Tesi di Dottorato in Genetica e Biologia Molecolare dello Sviluppo. Università di Padova. Peschel N, Veleri S and Stanewsky R. (2006) Veela defines a molecular link between cryptochrome and timeless in the light-input pathway to Drosophila’s circadian clock. PNAS 103, 17313-17318 Rieger D, Shafer O, Tomioka K and Helfrich-Förster C (2006) Functional analysis of circadian pacemaker neurons in Drosophila melanogaster. J. Neurosci 26, 2531-2543. Rosato E and Kyriacou CP. (2006). The analysis of locomotor activity rhythms in Drosophila. Nature Protocols 1, 559-568Rosato E, Tauber E and Kyriacou CP (2006) Molecular genetics of the fruit-fly circadian clock. Eur. J. Human Gen. 14, 729–738. Sawyer LA, Sandrelli F, Pasetto C, Peixoto AA, Rosato E, Costa R and Kyriacou CP. (2006) The period gene Thr-Gly polymorphism in Australian and African Drosophila melanogaster populations: Implications for selection. Genetics 174, 465–480. Shafer OT, Helfrich-Förster C, Renn SCP and Taghert PH (2006) Reevaluation of Drosophila melanogaster’s neuronal circadian pacemakers reveals new neuronal classes. J. Comp. Neurol. 498, 180-193. Veleri S, Rieger D, Helfrich Förster C and Stanewsky R (2007) Hofbauer-Buchner Eyelet Affects Circadian Photosensitivity and Coordinates TIM and PER Expression in Drosophila Clock Neurons. J. Biol. Rhythms 22, 29-42.
2007 Bachleitner W., Kempinger L., Wülbeck C., Rieger D. & Helfrich-Förster C. (2007). Moonlight shifts the endogenous clock of Drosophila melanogaster. PNAS, 104:3538-3543. Codd V., Dolezel D., Piccin A., Garner K.J., Racey S.N., Straatman K.R., Louis E.J., Costa R., Sauman I., Kyriacou C.P. & Rosato E. (2007). Circadian rhythm gene regulation in the housefly, Musca domestica. Genetics, in press De Pittà C., Bertolucci C., Mazzotta M.G., Bernante F., Rizzo G., De Nardi B., Pallavicini A., Lanfranchi G. & Costa R. (2007). Systematic sequencing of mRNA from the Antarctic krill (Euphausia superba) and first tissue specific transcriptional signature. BMC Genomics, in press. Glaser F. & Stanewsky R. (2008). Synchronization of the Drosophila circadian clock by temperature cycles: Cold Spring Harbor Symp. Quant. Biol., in press. Glaser F. (2007). Temperatursynchronisation der circadianen Uhr von Drosophila melanogaster: Eine genetische und molekulare Untersuchung beteiligter Mechanismen und Rezeptoren. Thesis, University of Regensburg Hamasaka Y., Rieger D., Parmentier M.-L., Grau Y., Helfrich-Förster C. & Nässel D. (2007). Glutamate and its Metabotropic Receptor in Drosophila Clock Neuron circuits. J. Comp. Neurol. 505, 32-45. Helfrich-Förster C., Shafer O.T., Wülbeck C., Grieshaber E., Rieger D. & Taghert P. (2007). Development and morphology of the clock-gene-expressing lateral neurons of Drosophila melanogaster. J. Comp. Neurol. 500, 47-70. Hemsley M.J., Mazzotta G.M., Mason M., Dissel S., Toppo S., Pagano M.A., Sandrelli F., Meggio F., Rosato E., Costa R. & Tosatto S.C. (2007). Linear motifs in the C-terminus of D. melanogaster cryptochrome. Biochem. Biophys. Res. Commun. 355, 531-537. Kyriacou C.P., Peixoto A.A. & Costa R. (2007). A cline in the Drosophila melanogaster period gene in Australia: neither down nor under. J. Evol. Biol. 20, 1649-1651. Kyriacou, C.P., Peixoto, A.A., Sandrelli, F., Costa R & Tauber, E. (2008). Clines in clock genes. Trends Genetics, in press. Maywood, E.S., O’Neil, J.S., Reddy, A.B., Chesham, J.E., Prosser, H.M., Kyriacou, C.P., Godinho, S I H, Nolan P.M., & Hastings, M.H. (2007). Genetic and molecular analysis of the central and peripheral circadian clockwork of mice. Cold Spring Harbor Symp. Quant. Biol. 72, 1-10. Picot M., Cusumano P., Klarsfeld A., Ueda R. & Rouyer F. (2007). Light activates output from evening neurons and inhibits output from morning neurons in the Drosophila circadian clock. PLoS Biol. 5(11), e315. Richier B., Michard-Vanh?e C., Lamouroux A., Papin C. & Rouyer F. (2008). The Clockwork Orange Drosophila protein functions as both an activator and a repressor of clock gene expression. J. Biol. Rhythms, in press. Rieger D. (2007) Die innere Uhr von Drosophila melanogaster. Synchronisation durch Licht und funktionelle Analyse der circadianen Schrittmacherneurone. Thesis, University of Regensburg. Rieger D., Fraunholz C., Popp J., Bichler D., Dittmann R., & Helfrich-Förster C. (2007). The fruit fly Drosophila melanogaster favours dim light and times its activity peaks to early dawn and late dusk. J. Biol. Rhythms 22, 387-399. Sandrelli F., Tauber E., Pegoraro M., Mazzotta G., Cisotto P., Landskron J., Stanewsky R., Piccin A., Rosato E., Zordan M., Costa R. & Kyriacou C.P. (2007). A molecular basis for natural selection at the timeless locus in Drosophila melanogaster. Science 316, 1898-1900. Sandrelli F., Cappellozza S., Benna C., Saviane A., Mastella A., Mazzotta G.M., Moreau S., Pegoraro M., Piccin A., Zordan M.A., Cappellozza L., Kyriacou C.P. & Costa R. (2007). Phenotypic effects induced by knock-down of the period clock gene in Bombyx mori. Genet. Res. 89, 73-84. Stanewsky R. (2007). Analysis of rhythmic gene expression in adult Drosophila using the firefly luciferase reporter gene. Methods Mol. Biol. 362, 131-42. Tauber E., Zordan M., Sandrelli F., Pegoraro M., Osterwalder N., Breda C., Daga A., Selmin A., Monger K., Benna C., Rosato E., Kyriacou C.P. & Costa R. (2007). Natural selection favors a newly derived timeless allele in Drosophila melanogaster. Science 316, 1895-1898. Tauber E., & Kyriacou, C.P. (2007). Genomic approaches for studying biological clocks. Functional Ecology, in press Veleri S., Rieger D., Helfrich Förster C. & Stanewsky R. (2007). Hofbauer-Buchner Eyelet Affects Circadian Photosensitivity and Coordinates TIM and PER Expression in Drosophila Clock Neurons. J. Biol. Rhythms 22, 29-42.
Copyright © by EUCLOCK - Entrainment of the circadian clock - All Right Reserved. Published on: 2024-02-07 (18536 reads) [ Go Back ] |